It's #NationalSuperheroDay and I have made at least 100 superhero costumes over the past 15 years + I could share any of them, but I've had the same favorite superhero since I was 4 years old. She used to lead the Avengers, you know. Captain Marvel herself, Monica Rambeau 🖤🤍 💫
#CaptainMarvel #Photon #Spectrum #MonicaRambeau #cosplay
spectrum
Observing waveforms, spectrums and Lissajous curves of sine waves in different intervals and stereo situations.
觀察正弦波在不同音程和立體聲狀態下的波形、頻譜和利薩茹曲綫。
Beobachtung von Wellenformen, Spektren und Lissajous-Kurven von Sinuswellen in verschiedenen Intervallen und Stereosituationen.
異なる音程とステレオ状態での正弦波の波形、スペクトルとリサージュ曲線を観察する。
Quan sát dạng sóng, quang phổ và đường cong Lissajous của sóng sin trong các quãng âm khác nhau và trạng thái âm thanh lập thể. / 觀察樣㳥,光譜吧塘𢏣Lissajous𧵑㳥sin𥪝各壙音恪僥吧狀態音聲立體。
སིན་ཐོན་གྱི་རླབས་ཀྱི་གནས་ལ་སྒྲ་ཚད་མི་མཚུངས་པ་དང་ལྟེབས་གཉིས་ཀྱི་གནས་ཡོད་པའི་གོ་རིམ་གྱི་རྣམ་པ་དང། སྒྲ་ཚད་ཀྱི་ཁྱད་པར། ལི་ས་ཇུ་གྱི་གོ་རིམ་ལ་ལྟ་བ།
https://youtu.be/pfMklTUu8Rs?si=_AYqi65TTjkOE8m9
#music #synthwave #synth #synthsizer #sine #cakewalk #stereo #stereotypes #lissajous #waveform #spectrum #音樂 #音楽 #musik #spek #合成 #シンセサイザー #bổtổnghợp #âmnhạc #རོལམོ #english #中文 #日本語 #deutsch #tiếngviệt #བོདསྐད #正弦波 #波形 #光譜 #スペクトル #quangphổ
The Fourier Transform is a mathematical operation that transforms a function of time (or space) into a function of frequency. It decomposes a complex signal into its constituent sinusoidal components, each with a specific frequency, amplitude, and phase. This is particularly useful in many fields, such as signal processing, physics, and engineering, because it allows for analysing the frequency characteristics of signals. The Fourier Transform provides a bridge between the time and frequency domains, enabling the analysis and manipulation of signals in more intuitive and computationally efficient ways. The result of applying a Fourier Transform is often represented as a spectrum, showing how much of each frequency is present in the original signal.
\[\Large\boxed{\boxed{\widehat{f}(\xi) = \int_{-\infty}^{\infty} f(x)\ e^{-i 2\pi \xi x}\,\mathrm dx, \quad \forall\xi \in \mathbb{R}.}}\]
Inverse Fourier Transform:
\[\Large\boxed{\boxed{ f(x) = \int_{-\infty}^{\infty} \widehat f(\xi)\ e^{i 2 \pi \xi x}\,\mathrm d\xi,\quad \forall x \in \mathbb R.}}\]
The equation allows us to listen to mp3s today. Digital Music Couldn’t Exist Without the Fourier Transform: http://bit.ly/22kbNfi
#Fourier #FourierTransform #Transform #Time #Frequency #Space #TimeDomain #FrequencyDomain #Wavenumber #WavenumberDomain #Function #Math #Maths #JosephFourier #Signal #Signals #FT #IFT #DFT #FFT #Physics #SignalProcessing #Engineering #Analysis #Computing #Computation #Operation #ComplexSignal #Sinusoidal #Amplitude #Phase #Spectra #Spectrum #Pustam #Raut #PustamRaut #EGR #Mathstodon #Mastodon #GeoFlow #SpectralMethod